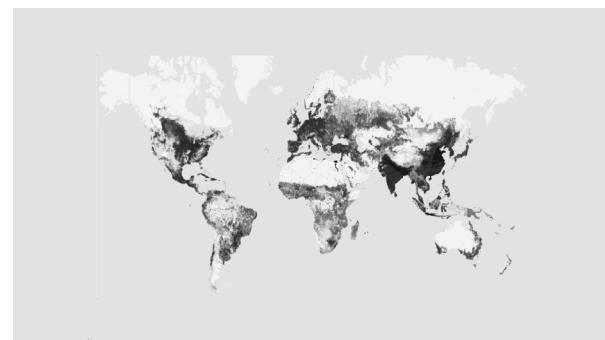
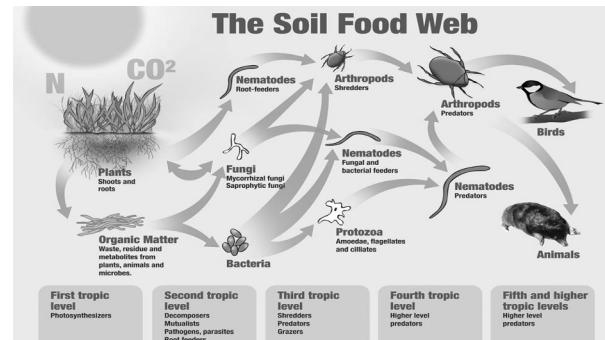
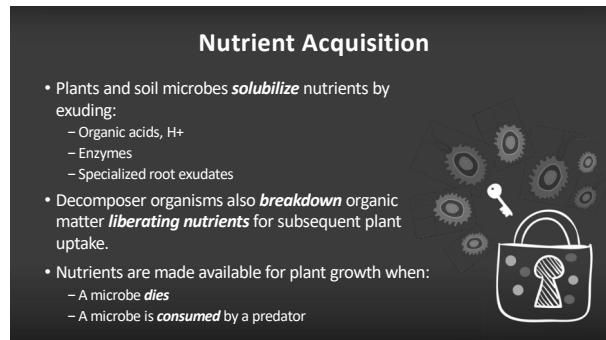

Leveraging soil biology for nutrient cycling

SSCA: Feb 16 2022

Joel Williams
www.integratedsoils.com
[@integratedsoils](https://twitter.com/integratedsoils)

Introduction

Available vs Total Nutrients

	mg/kg	Field 1	Field 2	Field 3
Ca	Available	5045	6983	7505
	Total	38,804	43,317	47,383
Mg	Available	428	458	985
	Total	14,404	10,453	17,071
K	Available	184	239	347
	Total	1,341	1,657	2,164
S	Available	7.7	10	6.8
	Total	206	213	188
P	Available	23	33	11
	Total	434	524	540

Available vs Total Nutrients

	mg/kg	Field 1	Field 2	Field 3
Zn	Available	0.5	0.5	0.4
	Total	39.9	41.5	63.4
Mn	Available	32	45	29
	Total	432	413	484
Fe	Available	19	14	20
	Total	14,515	13,444	18,044
Cu	Available	1.6	1.8	2.8
	Total	13.3	14.1	20.6
B	Available	0.39	0.43	0.58
	Total	8.5	9.7	13.5

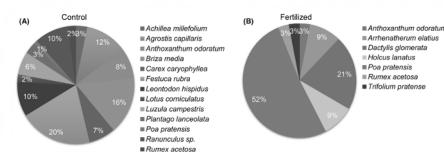
microbial biotechnology

Open Access

Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers

Summary

Understanding the changes in plant-microbe interactions is critically important for predicting ecosystem functioning in response to human-induced environmental changes such as nitrogen (N) addition. In this study, the effects of long-term (open-field) fertilizer treatment (> 150 years) on the networks between plants and soil microbial functional communities, detected by GeoChip, in grassland were determined in the Park Grass Experiment at Rothamsted Research, UK. Our results showed that plants and soil microbes have a consistent response to long-term fertilization—both richness and diversity of plants and soil microbes are significantly decreased, as well as microbial functional genes involved in soil carbon (C), nitrogen (N) and phosphorus (P) cycling.

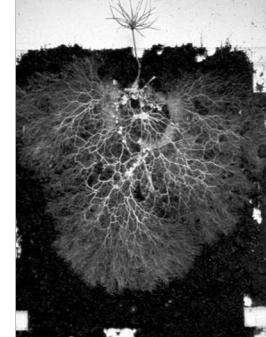
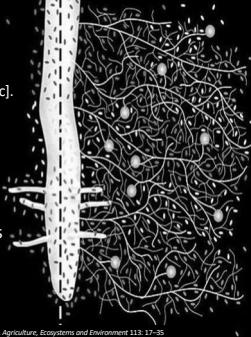

Rulin Huang,¹ Steve P. McGrath,¹ Penny R. Hirsch,² Ian M. Clark,² Jonathan Sturley,² Lixun Wu,³ Jiahong Zhou,⁴ and Yuting Liang^{2,4}

¹ *Huang, R. et al. (2015) doi:10.31137/2515-7315-3467*

microbial biotechnology

Open Access

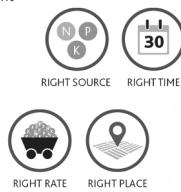
Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers

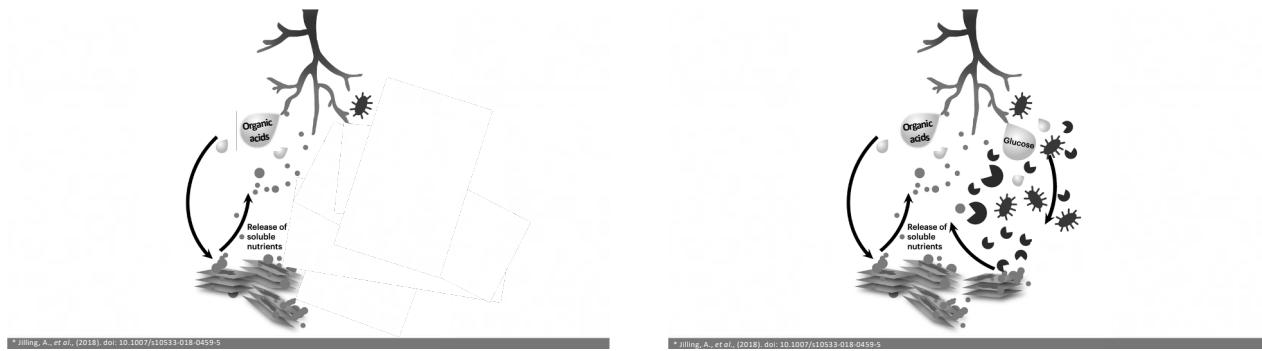
² *Huang, R. et al. (2015) doi:10.31137/2515-7315-3467*

Starter P: Gain a Little or Lose a Lot?

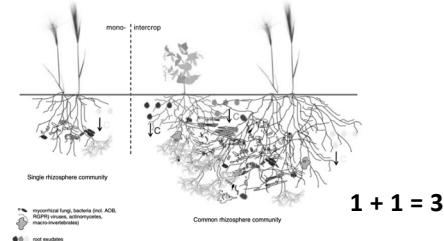
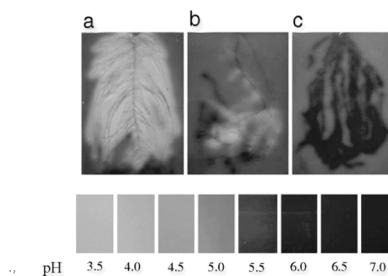
- AMF are not solely about nutrient access [P etc].
- Secondary benefits of AMF include:
 - Drought resistance
 - Tolerance to salinity
 - Disease resistance
 - Tolerance to heavy metals
- Oversupply of P shuts down AMF associations thereby additionally limiting these secondary benefits.

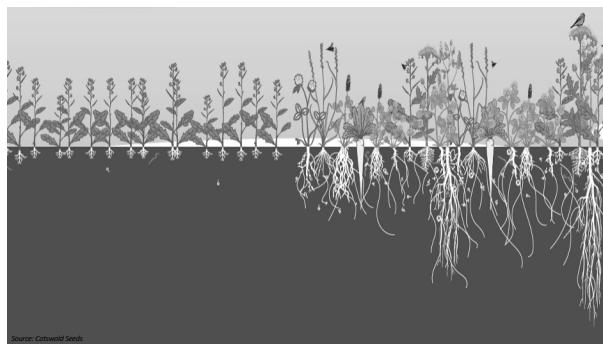

* Gosling, P., Hodge, A., Goodlass, G., and Bending G.D. (2006). Arbuscular mycorrhizal fungi and organic farming. *Agriculture, Ecosystems and Environment* 113: 17–35

Improving NUE


- Options to improve nutrient use efficiencies:

- Integrated Nutrient Management
- 4 R's
- Organic amendments
- Carbon based inputs
- Seed treatments
- Foliar sprays
- Plants
- Biostimulants
- Biofertilizers



Plants



* Jilling, A., et al., (2018). doi: 10.1007/s10533-018-0459-5

* Jilling, A., et al., (2018). doi: 10.1007/s10533-018-0459-5

* Ehrmann, J., & Ritz, K. (2014). doi: 10.1007/s11104-013-1921-8

Do cover crops benefit soil microbiome? A meta-analysis of current research

ABSTRACT

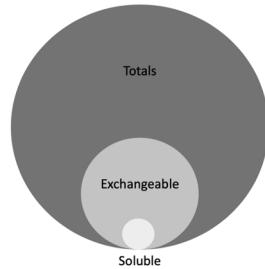
Cover cropping is a promising sustainable agricultural method with the potential to enhance soil health and mitigate consequences of soil degradation. Because cover cropping can form an agroecosystem distinct from that of bare fallow, the soil microbiome is hypothesized to respond to the altered environmental circumstances. Despite the growing number of primary studies on soil microbiome, the relationship between cover cropping and the soil microbiome has not been a quantitative research question that is sufficiently comprehensive and specific to this relationship. We conducted a meta-analysis by compiling the results of 60 relevant studies reporting cover cropping effects on soil microbial properties to estimate global effect sizes and explore the current state of knowledge. The global effect sizes for cover cropping on soil microbial biomass, activity, and diversity by 27%, 22%, and 25% respectively, compared to those of bare fallow. Moreover, cover cropping effect sizes varied by agricultural covariates like cover crop termination or tillage methods. Notably, cover cropping effects were less pronounced under conditions like continental climate, chemical soil termination, and low cover crop coverage. This meta-analysis shows that the soil microbiome can become more robust under cover cropping when properly managed with other agricultural practices. However, more primary research is still needed to control between-study heterogeneity and to more eloquently assess the relationships between cover cropping and the soil microbiome.

* Kim, N., et al., (2020). doi: 10.1016/j.soilbio.2019.107701

Root exudate cocktails: the link between plant diversity and soil microorganisms?

* Steinauer, K., et al. (2016). doi: 10.1002/ece3.2454

Root Exudate Cocktails

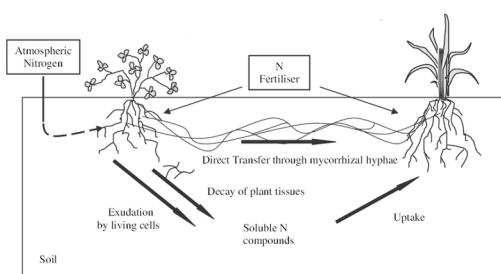

The **quality** and **quantity** of root exudates is determined by:

- **Biotic Factors**
 - Plant species
 - Plant age/stage
 - Plant nutrition/photosynthesis
 - Neighbouring plants
 - Interacting organisms
 - Herbivores
- **Abiotic Factors**
 - Environmental factors
 - Light
 - Temperature
 - Soil pH
 - Moisture
 - Soil nutrient supply

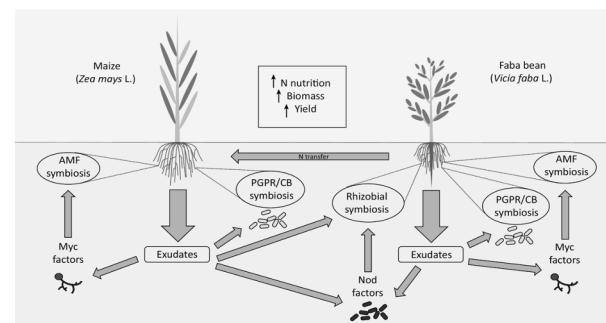
* Steinauer, K., et al. (2016). doi: 10.1002/ece3.2454 * Dietz, S., et al. (2020). doi:10.1038/s41598-019-54209-5

Image: Glynn Bengough

A meta-analysis of global cropland soil carbon changes due to cover cropping

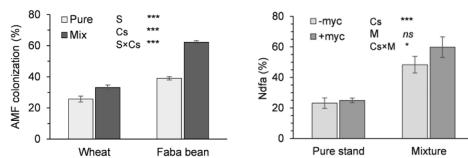

ABSTRACT

Including cover crops within agricultural rotations may increase soil organic carbon (SOC). However, contrasting results have been reported, and the underlying causes of interactions between cover crops, environmental and management factors, and changes in SOC. In this study, we collected data from studies that compared agricultural production with and without cover crops, and then analyzed the effects of cover cropping on SOC. The meta-analysis revealed that cover cropping increased SOC. Cover cropping significantly increased SOC with an overall mean change of 15.5% (95% confidence interval of 2.3% to 27.7%). The mean annual increase in SOC was 0.56 Mg C ha⁻¹ yr⁻¹. The mean annual increase in SOC was 0.56 Mg C ha⁻¹ without cover crops, fine textured soils showed the greatest increase in SOC after the inclusion of cover crops, and the mean annual increase in SOC was 0.62 Mg C ha⁻¹. The mean annual increase in SOC was 0.50 Mg C ha⁻¹ under changes in SOC, while soils in temperate climates had greater changes (18.7%) than those in tropical climates (10.8%). The mean annual increase in SOC was 0.56 Mg C ha⁻¹ yr⁻¹ for cover cropping systems using cover crops and using legumes caused greater SOC increases than grass species. Cover crop biomass positively affected SOC changes and carbon storage of cover crop biomass in shallow soils (<30 cm), but not in subsoils with (>30 cm). The regression analysis revealed that SOC changes from cover cropping correlated with improvements in soil properties, including soil organic matter, soil microbial biomass, soil enzyme activities, soil mineral nitrogen, and soil strength. Soil carbon change was also affected by annual temperature, number of years after start of cover cropping, and soil texture. The mean annual increase in SOC was 0.56 Mg C ha⁻¹ yr⁻¹. If 10% of current global cropland were to adopt cover cropping, the mean annual increase in SOC would be 0.56 Mg C ha⁻¹ yr⁻¹. This would result in a reduction of 1.05 Gt C in fossil fuel emissions. Altogether, these results indicated that the inclusion of cover crops into agricultural rotations can increase soil carbon concentrations, improve many soil quality parameters, and serve as a potential sink for atmospheric CO₂.

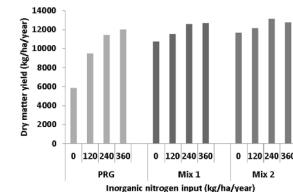

* Jian, J., et al. (2020). doi:10.1016/j.soilbio.2020.107735

Cover Crops:

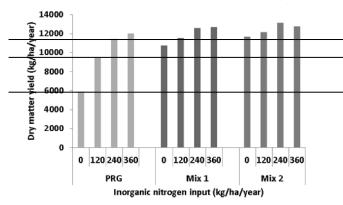
- SOC increase of 15%
- Clay soils more responsive than sandy
- More potential in temperate vs tropical
- Mixtures > Monocultures
- Surface soils more responsive (30 cm)


* Paynel, E., et al (2005). doi: 10.1016/j.agro.2007061

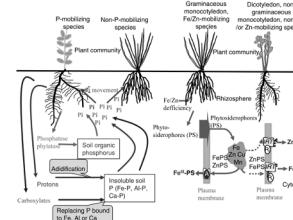
* <https://doi.org/10.1016/j.plants.2017.05.004>


Trends in Plant Science

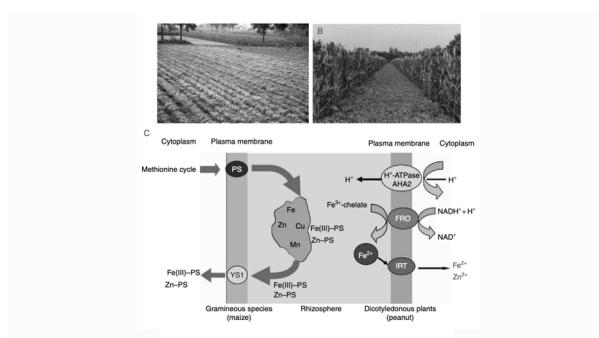
Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N₂ fixation, N transfer, and growth in a wheat/faba bean intercropping system


* Ingraffia, R., et al., (2019). doi: 10.1371/journal.pone.0213672

Yield of binary- and multi-species swards relative to single-species swards in intensive silage systems


* Moloney, T., et al., (2020). doi: 10.2478/ijafr-2020-0002

Yield of binary- and multi-species swards relative to single-species swards in intensive silage systems



* Moloney, T., et al., (2020). doi: 10.2478/ijafr-2020-0002

Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture

* Li, L., et al., (2014). doi: 10.1111/nph.12778

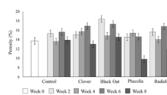
Table 2 Effect of year and cover crop on leaf nutrient means and standard errors (standard errors are given in parentheses) of phospholipid fatty acid (PLFA) concentration (nmol/g) in bulk soil in fall (approximately two months following crop planting in August of 2011 (Year 1) and August of 2012 (Year 2)) in central Pennsylvania									
Year/crop									
Total PLFA	Gram + bacteria	Gram - bacteria	Actinomycetes	Non-AM fungi	AM fungi	Proteobacteria			
Year 1	71.66 (0.09)	17.40 (0.18)	21.90 (0.24)	9.95 (0.020)	1.21 (0.049)	2.95 (0.04)	0.78 (0.022)		
Year 2	77.45 (1.29)	20.29 (0.32)	24.20 (0.40)	12.07 (0.20)	0.84 (0.05)	3.04 (0.06)	0.53 (0.038)		
No cover crop	69.54 (1.40)	17.81 (0.37)	21.48 (0.53)	9.76 (0.15)	0.76 (0.05)	2.72 (0.06)	0.50 (0.038)		
PRG (Year 1)	72.33 (1.30)	18.82 (0.63)	22.51 (0.33)	11.07 (0.22)	0.90 (0.12)	2.93 (0.13)	0.59 (0.05)		
Soybean (SB)	72.73 (1.30)	18.82 (0.63)	22.51 (0.33)	11.07 (0.22)	0.90 (0.12)	2.72 (0.06)	0.59 (0.05)		
Red clover (RC)	69.34 (1.58)	17.50 (0.62)	21.38 (0.51)	10.34 (0.08)	0.93 (0.11)	2.72 (0.06)	0.59 (0.05)		
Forage rye (FR)	70.21 (1.30)	18.72 (0.56)	23.08 (0.36)	11.36 (0.14)	0.94 (0.12)	2.84 (0.13)	0.60 (0.06)		
Forage radish (FR)	73.95 (2.27)	18.27 (0.56)	23.08 (0.36)	10.80 (0.32)	1.14 (0.20)	2.92 (0.11)	0.59 (0.08)		
Grass (G)	75.15 (2.18)	19.40 (0.76)	24.37 (0.80)	11.36 (0.64)	1.23 (0.20)	3.26 (0.18)	0.60 (0.11)		
Carrot (C)	76.20 (1.97)	18.86 (0.56)	23.23 (0.77)	10.30 (0.14)	0.96 (0.12)	2.86 (0.13)	0.60 (0.11)		
Carrot (C)	76.20 (1.97)	18.86 (0.56)	23.23 (0.77)	10.30 (0.14)	1.11 (0.12)	3.20 (0.14)	0.60 (0.11)		
PRG + G + C + CR	70.53 (3.39)	18.81 (0.99)	23.21 (1.09)	10.80 (0.51)	0.95 (0.12)	3.10 (0.20)	0.65 (0.06)		
SB + G + PR + C	76.25 (3.47)	19.03 (1.22)	23.97 (1.00)	11.29 (0.82)	1.09 (0.12)	3.11 (0.17)	0.67 (0.09)		
RC + PR + C	76.25 (3.47)	19.03 (1.22)	23.97 (1.00)	11.29 (0.82)	1.09 (0.12)	3.11 (0.17)	0.67 (0.09)		
FR + PR + C	73.82 (2.85)	18.43 (0.89)	22.44 (0.73)	10.97 (0.41)	0.96 (0.13)	2.94 (0.13)	0.70 (0.19)		
FR + G + PR + C	73.82 (2.85)	18.43 (0.89)	22.44 (0.73)	11.26 (0.68)	0.82 (0.10)	3.20 (0.14)	0.70 (0.19)		
Cover crop vs. no cover crop	5.37	0.04	1.11	0.14	1.68	0.04	0.04	0.93	0.28
Est. p-value									0.35
Ed. p-value									0.02
Ec. p-value									0.09

Notes: Gram ++ = Gram positive, Gram - = Gram negative, AM = arbuscular mycorrhizal, df = degrees of freedom, Est. = estimate, Values within a column with different letters were significantly different due to year or cover crop based on Tukey's honestly significant difference ($p < 0.05$). The absence of letters in a column indicates that the effect of year or cover crop was not significant.

* Finney, D.M., et al., (2017). doi: 10.2485/jwc.72.4.361

Table 4 Effect of year and cover crop on least square means and standard errors (standard errors are values in parentheses) of phospholipid fatty acid (PLFA) concentration (nmol g ⁻¹) in bulk soil in spring approximately nine months following cover crop planting in August of 2011 (Year 1) and August of 2012 (Year 2) in central Pennsylvania.							
Year/crop	Total PLFA	Gram + bacteria	Gram - bacteria	Acarinomycetes	Non-AM fungi	AM fungi	Protozoa
Year 1	100.14 (1.29) 73.53 (1.40)	25.14 (0.31) 18.54 (0.33)	31.01 (0.44) 23.38 (0.49)	13.32 (0.36) 10.92 (0.23)	2.43 (0.10) 1.21 (0.09)	4.19 (0.08) 2.72 (0.07)	1.05 (0.04) 0.47 (0.03)
No cover crop	100.14 (1.29) 73.53 (1.40)	25.14 (0.31) 18.54 (0.33)	31.01 (0.44) 23.38 (0.49)	13.32 (0.36) 10.92 (0.23)	2.43 (0.10) 1.21 (0.09)	4.19 (0.08) 2.72 (0.07)	1.05 (0.04) 0.47 (0.03)
Barley (BH)	85.89 (0.44) 82.78 (0.36)	22.77 (1.48) 21.44 (1.26)	26.11 (1.87) 25.24 (1.59)	12.47 (0.80) 12.06 (0.77)	3.80 (0.58) 3.70 (0.28)	3.40 (0.29) 3.26 (0.30)	0.54 (0.04) 0.68 (0.11)
Forage radish (FR)	84.98 (0.74) 86.13 (0.76)	22.37 (1.56) 22.93 (1.56)	26.21 (1.49) 27.73 (1.93)	12.04 (0.62) 11.54 (0.65)	3.97 (0.37) 2.60 (0.29)	3.22 (0.28) 3.25 (0.32)	0.80 (0.22) 0.79 (0.13)
Red clover (RC)	87.33 (0.31) 87.98 (0.58)	20.98 (1.56) 22.37 (1.56)	27.73 (1.93) 28.23 (1.93)	12.47 (0.80) 12.46 (0.78)	3.78 (0.38) 3.73 (0.38)	3.38 (0.29) 3.39 (0.29)	0.86 (0.14) 0.82 (0.16)
Crab (CA)	86.13 (0.58) 87.98 (0.58)	22.37 (1.56) 22.37 (1.56)	26.21 (1.49) 27.73 (1.93)	12.47 (0.80) 12.46 (0.78)	3.78 (0.38) 3.73 (0.38)	3.38 (0.29) 3.39 (0.29)	0.79 (0.13) 0.82 (0.16)
Winter rye (DR)	87.98 (0.58) 87.98 (0.58)	22.37 (1.56) 22.37 (1.56)	27.73 (1.93) 28.23 (1.93)	12.46 (0.78) 12.46 (0.78)	3.73 (0.38) 3.73 (0.38)	3.38 (0.29) 3.38 (0.29)	0.82 (0.16) 0.82 (0.16)
FR + CA + CR	84.98 (0.13)	21.38 (1.13)	26.06 (1.13)	12.11 (0.54)	4.40 (0.36)	3.48 (0.26)	0.75 (0.11)
SH + CA + CR	86.26 (0.16)	21.38 (1.13)	26.06 (1.13)	12.11 (0.54)	4.40 (0.36)	3.48 (0.26)	0.75 (0.11)
RC + HI + CA + CR	87.97 (0.59)	20.66 (1.47)	24.38 (2.02)	13.55 (0.75)	2.43 (0.43)	3.54 (0.36)	0.77 (0.11)
SH + SB + CA + CR	86.26 (0.16)	21.54 (1.56)	27.19 (1.77)	11.98 (0.72)	1.52 (0.23)	3.56 (0.36)	0.74 (0.13)
all species	84.47 (0.22)	22.93 (0.63)	20.20 (0.79)	13.87 (0.52)	2.11 (0.43)	3.52 (0.36)	0.94 (0.04)
Cover crops vs. no crop	10.20 <0.01	1.64 0.03	3.98 <0.01	0.48 0.26	0.43 0.01	0.53 <0.01	0.19 0.01
Contrast	Est. p-value	Est. p-value	Est. p-value	Est. p-value	Est. p-value	Est. p-value	Est. p-value

* Finney, D.M., et al. (2017). doi:10.2489/jswc.72.4.361


SCIENTIFIC REPORTS

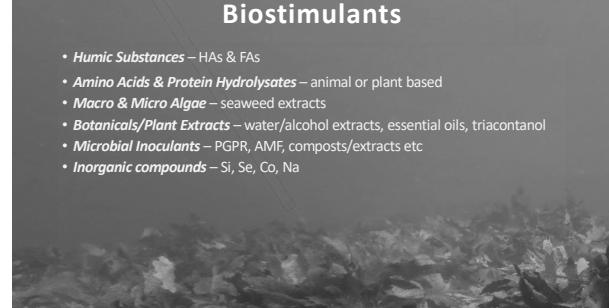
www.nature.com/scientificreports/

Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype

Aurelie Bacq Labreuil¹, John Crawford^{2,3}, Sacha J. Mooney², Andrew L. Neal² & Karl Ritz^{2,3}

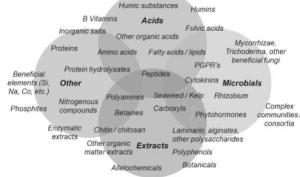
Cover crops (plants grown in an agricultural rotation between cash crops) can significantly improve soil quality via sequestering carbon, retaining nutrients, decreasing soil erosion, and maintaining belowground biodiversity. However, little is known about the effects of specific species upon soil structure, and the mechanisms by which they implement these benefits. Here we show that cover crop species have contrasting root architecture (viz. clover, black oat, phacelia, tillage radish) on soil structural genesis and the associated modification of microbial community structure in a clay soil. The four plant species were sown in a 1:1:1:1 ratio and grown for 8 weeks. X-ray Computed Tomography was used to quantify the formation of pore networks in 3D and phospholipid fatty acid analysis was performed to characterise the microbial community structure. The results show that species with a more fibrous root system were able to penetrate deeper into the growth period, whereas phacelia decreased both the porosity and pore-connectivity. The microbial community phenotype under phacelia was notably different from the other species, with a greater proportion of Gram-negative bacteria. This study provides evidence that certain species may be more suitable as cover crops in soil structural conditioning depending upon specific contexts.

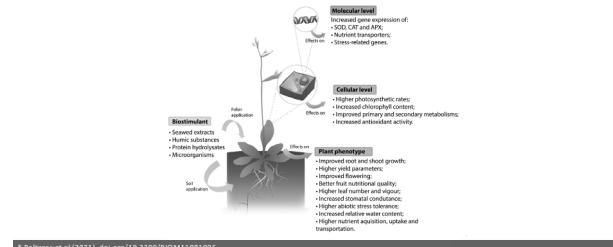
* Bacq-Labreuil, A., et al. (2019). doi:10.1038/s41598-019-43937-6

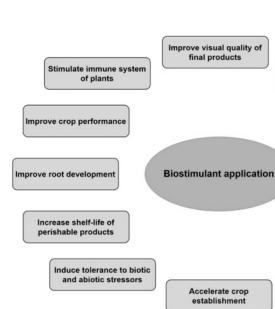

Managing for Roots

- **Cash Crops**
 - Higher root:shoot ratios
 - Use of perennials
 - Breed new varieties for below ground traits
- **Inputs**
 - Root enhancing nutrition/biostimulants etc
- **Maintain a living root**
 - Cover crops and relay intercropping
 - Avoid bare fallows
- **Minimize Disturbance**
 - Preserve aggregate stability
- **Polycultures**
 - Variety of root architectures
 - Companions/intercrops for below ground benefits
- **Cover crops**
 - Higher root:shoot species and varieties
 - Higher quality litters (low C:N) → MAOM
- **Livestock Integration**
 - Rotational and holistic grazing – more root recovery

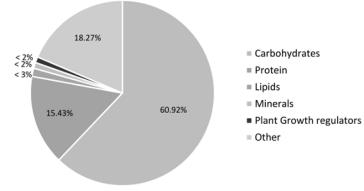
Biostimulants


- **Humic Substances** – HAs & FAs
- **Amino Acids & Protein Hydrolysates** – animal or plant based
- **Macro & Micro Algae** – seaweed extracts
- **Botanicals/Plant Extracts** – water/alcohol extracts, essential oils, triacontanol
- **Microbial Inoculants** – PGR, AMF, composts/extracts etc
- **Inorganic compounds** – Si, Se, Co, Na


Feed Biology: Biostimulants


Multiple compounds
↓
Multiple MoAs

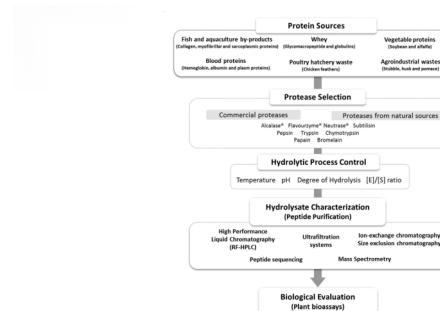
Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview



* Baltazar et al (2021). doi.org/10.3390/BIOM11081096

* Shahrajabian et al (2021). doi.org/10.3390/biom11050698

Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production


* Ali et al (2021). doi.org/10.3390/plants10030531

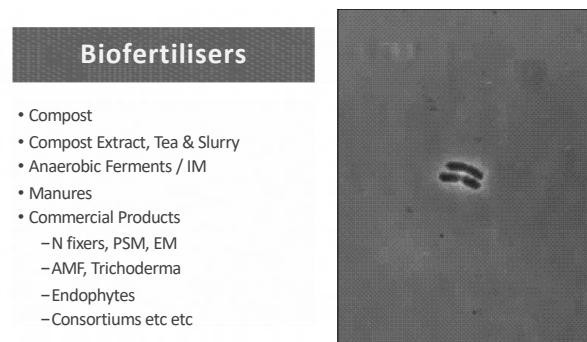
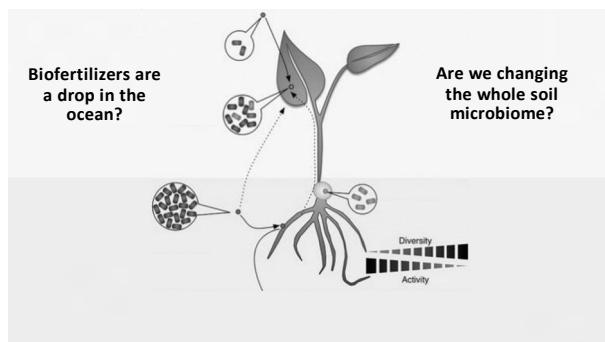
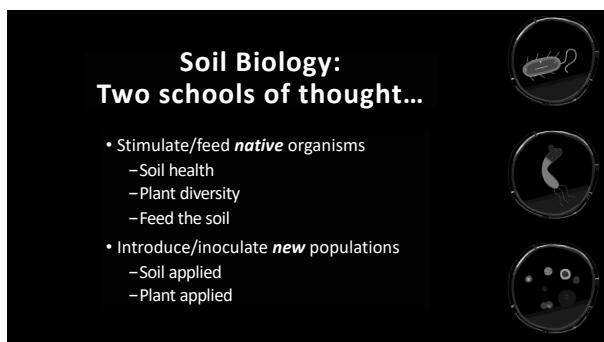
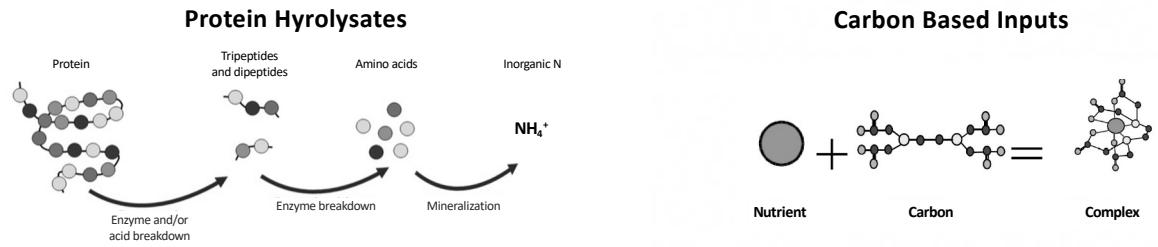
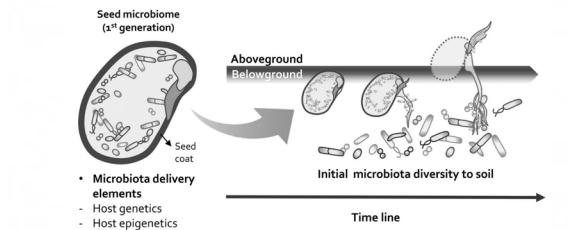
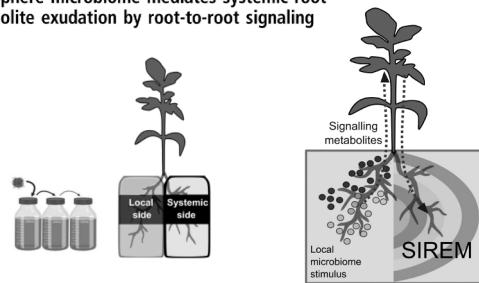




Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems

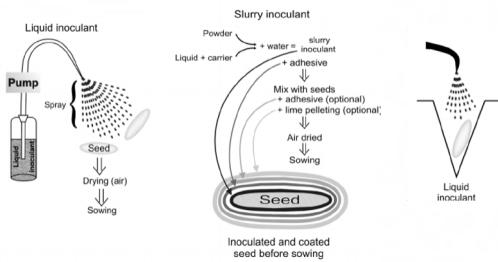
Table 1. Effect of seaweed extracts on plant nutrient uptake and translocation.							
Plant	Seaweed Species	Extraction Method	Elemental Composition	Experiments Conditions	Mode of Application	Findings	Source
Maize	Kappaphycus alvarezii (Red seaweed)	Liquid filtrate	K = 33.64 mg L ⁻¹ , P = 17.67 mg L ⁻¹ , N = 112.71 mg L ⁻¹ for K and Ca respectively.	Field experiment	Root spray	Enhanced N, P and K uptake (grain & leaves) for both extracts	[17]
Oxidized Rape	Edible rapeseed	Cold cell breakage	Na = 10.4 mg g ⁻¹ , P = 2.02 mg g ⁻¹ , K = 2.12 mg g ⁻¹ , Ca = 0.42 mg g ⁻¹ , Mg = 0.12 mg g ⁻¹ , Fe = 0.02 mg g ⁻¹ , Mn = 0.01 mg g ⁻¹ , Zn = 0.01 mg g ⁻¹ , Cu = 0.005 mg g ⁻¹ , Ni = 0.002 mg g ⁻¹ , Pb = 0.002 mg g ⁻¹ , Cd = 0.002 mg g ⁻¹ , Hg = 0.001 mg g ⁻¹	Pot experiment	Root application	Enhanced Leaf P and K concentrations	[18]
Tomato	Edible rapeseed	Cold cell breakage	Na = 10.4 mg g ⁻¹ , P = 2.02 mg g ⁻¹ , K = 2.12 mg g ⁻¹ , Ca = 0.42 mg g ⁻¹ , Mg = 0.12 mg g ⁻¹ , Fe = 0.02 mg g ⁻¹ , Mn = 0.01 mg g ⁻¹ , Zn = 0.01 mg g ⁻¹ , Cu = 0.005 mg g ⁻¹ , Ni = 0.002 mg g ⁻¹ , Pb = 0.002 mg g ⁻¹ , Cd = 0.002 mg g ⁻¹ , Hg = 0.001 mg g ⁻¹	In soil under greenhouse	Root spray	Enhanced Leaf Ca concentration	[18]
Tomato	Aspergillus niger	Not mentioned	Na = 10.4 mg g ⁻¹ , P = 2.02 mg g ⁻¹ , K = 2.12 mg g ⁻¹ , Ca = 0.42 mg g ⁻¹ , Mg = 0.12 mg g ⁻¹ , Fe = 0.02 mg g ⁻¹ , Mn = 0.01 mg g ⁻¹ , Zn = 0.01 mg g ⁻¹ , Cu = 0.005 mg g ⁻¹ , Ni = 0.002 mg g ⁻¹ , Pb = 0.002 mg g ⁻¹ , Cd = 0.002 mg g ⁻¹ , Hg = 0.001 mg g ⁻¹	Plant growth chamber	Not mentioned	Enhanced concentrations of Na, Cu and Zn in root and leaf	[17]
Oxidized Rape	Aspergillus niger	Acid extraction	Na = 10.4 mg g ⁻¹ , P = 2.02 mg g ⁻¹ , K = 2.12 mg g ⁻¹ , Ca = 0.42 mg g ⁻¹ , Mg = 0.12 mg g ⁻¹ , Fe = 0.02 mg g ⁻¹ , Mn = 0.01 mg g ⁻¹ , Zn = 0.01 mg g ⁻¹ , Cu = 0.005 mg g ⁻¹ , Ni = 0.002 mg g ⁻¹ , Pb = 0.002 mg g ⁻¹ , Cd = 0.002 mg g ⁻¹ , Hg = 0.001 mg g ⁻¹	Pot experiment	Root spray	Enhanced Na, Cu and Mg concentrations	[17]
Wheat	Aspergillus niger	Acid extraction	Na = 10.4 mg g ⁻¹ , P = 2.02 mg g ⁻¹ , K = 2.12 mg g ⁻¹ , Ca = 0.42 mg g ⁻¹ , Mg = 0.12 mg g ⁻¹ , Fe = 0.02 mg g ⁻¹ , Mn = 0.01 mg g ⁻¹ , Zn = 0.01 mg g ⁻¹ , Cu = 0.005 mg g ⁻¹ , Ni = 0.002 mg g ⁻¹ , Pb = 0.002 mg g ⁻¹ , Cd = 0.002 mg g ⁻¹ , Hg = 0.001 mg g ⁻¹	Pot experiment	Root spray	Enhanced Grain K	[17]
Oxidized Rape	Aspergillus niger	Acid extraction	Na = 10.4 mg g ⁻¹ , P = 2.02 mg g ⁻¹ , K = 2.12 mg g ⁻¹ , Ca = 0.42 mg g ⁻¹ , Mg = 0.12 mg g ⁻¹ , Fe = 0.02 mg g ⁻¹ , Mn = 0.01 mg g ⁻¹ , Zn = 0.01 mg g ⁻¹ , Cu = 0.005 mg g ⁻¹ , Ni = 0.002 mg g ⁻¹ , Pb = 0.002 mg g ⁻¹ , Cd = 0.002 mg g ⁻¹ , Hg = 0.001 mg g ⁻¹	Pot under greenhouse conditions	Root solution	Stimulation of root and above N and S	[17]
Soybean	Kappaphycus alvarezii	Liquid filtrate	Na = 0.179 mg g ⁻¹ , P = 1.417 mg g ⁻¹ , K = 0.160 mg g ⁻¹ , Ca = 0.057 mg g ⁻¹ , Mg = 0.025 mg g ⁻¹ , Fe = 0.009 mg g ⁻¹ , Mn = 0.001 mg g ⁻¹ , Zn = 0.001 mg g ⁻¹ , Cu = 0.0005 mg g ⁻¹	Soil, field experiment	Root spray	Enhanced N, P, K & grain uptake and N, P, Na & uptake	[17]

* El Boukhari et al (2020). doi.org/10.3390/plants9030359



* Moreno-Hernández et al (2020). doi.org/10.4067/S0719-5839202000200274




* <http://dx.doi.org/10.1016/j.mib.2017.03.010>

Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling

* Korenblum, E., et al. (2020), doi: 10.1073/pnas.1912130117

In Summary

- Soil nutrients are often plentiful
- Fertilizer inputs are often inefficient
- Leveraging fertility with biology:
 - System Design: Take a systems approach, integrate many tools, livestock
 - Plants: The living roots are the key, mono or mixtures
 - Feed: C-based inputs and biostimulants
 - Inoculants: Seed treatments and Liquid Inject

